skip to main content


Search for: All records

Creators/Authors contains: "O'Neill, Maura R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Elastomer‐granule composites have been used to switch between soft and stiff states by applying negative pressure differentials that cause the membrane to squeeze the internal grains, inducing dilation and jamming. Applications of this phenomenon have ranged from universal gripping to adaptive mobility. Previously, the combination of this jamming phenomenon with the ability to transport grains across multiple soft actuators for shape morphing has not yet been demonstrated. In this paper, the authors demonstrate the use of hollow glass spheres as granular media that functions as a jammable “quasi‐hydraulic” fluid in a fluidic elastomeric actuator that better mimics a key featur of animal musculature: independent control over i) isotonic actuation for motion; and ii) isometric actuation for stiffening without shape change. To best implement the quasi‐hydraulic fluid, the authors design and build a fluidic device. Leveraging this combination of physical properties creates a new option for fluidic actuation that allows higher specific stiffness actuators using lower volumetric flow rates in addition to independent control over shape and stiffness. These features are showcased in a robotic catcher's mitt by stiffening the fluid in the glove's open configuration for catching, unjamming the media, then pumping additional fluid to the mitt to inflate and grasp.

     
    more » « less
  2. Abstract

    A comprehensive material system is introduced for the additive manufacturing of electrohydraulic (HASEL) tentacle actuators. This material system consists of a photo‐curable, elastomeric silicone‐urethane with relatively strong dielectric properties (εr ≈ 8.8 at 1 kHz) in combination with ionically‐conductive hydrogel and silver paint electrodes that displace a vegetable‐based liquid dielectric under the application of an electric field. The electronic properties of the silicone material as well as the mechanical properties of the constitutive silicone and hydrogel materials are investigated. The hydraulic pressure exerted on the dielectric working fluid in these capacitive actuators is measured in order to characterize their quasi‐static behavior. Various design features enabled by 3D printing influence this behavior—decreasing the voltage at which actuation begins or increasing the force density in the system. Using a capacitance change of >35% across the actuators while powered, a demonstration of self‐sensing inherent to HASELs is shown. Antagonistic pairs of the 3D printed actuators are shown to exert a blocked force of over 400 mN. An electrohydraulic tentacle actuator is then fabricated to demonstrate the use of this material and actuation system in a synthetic hydrostat. This tentacle actuator is shown to achieve motion in a multi‐dimensional space.

     
    more » « less